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Abstract 

We rigorously quantify the probability of liquid or ice thermodynamic phase using only 

shortwave spectral channels specific to the NASA MODIS, VIIRS, and the notional future 

PACE imager. The results show that two shortwave-infrared channels (2135 nm and 2250 nm) 

provide more information on cloud thermodynamic phase than either channel alone. The analysis 

is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear 

Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the 

retrieval of cloud optical properties from passive shortwave observations, for an assumed 

thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA 

to a binary thermodynamic phase space (i.e. liquid or ice). We apply formal information content 

metrics to quantify our results; two of these (mutual and conditional information) have not 

previously been used in the field of cloud studies.     

1 Introduction 

A critical first step in useful cloud optical property retrievals (optical thickness and 

droplet effective radius) is the retrieval of cloud thermodynamic phase [Marchant et al., 2016]. 

Existing operational satellite algorithms derive cloud thermodynamic phase from cloud 

observations in one or more discrete spectral channels where water absorbs solar and/or infrared 

radiation differently for liquid and ice phases. However, in many cases the measurement 

information does not uniquely indicate phase [e.g., Marchant et al., 2016].  

Most of the satellite imagers that have contributed to individual cloud property datasets in 

a nearly 30-year long global record [Stubenrauch et al., 2013] have used a combination of 

infrared measurements along with visible and near-infrared channels to derive the cloud 

properties [e.g., Baum et al., 2012; Menzel et al., 2008; Pavolonis and Heidinger, 2004]. For 

example, the National Aeronautics and Space Administration’s (NASA) MODerate resolution 

Imaging Spectroradiometer (MODIS) instrument [King et al., 1992] on the Aqua and Terra 

platforms uses infrared channels in a weighted voting discrimination logic to help extract cloud 

thermodynamic phase information using trispectral infrared and cloud top temperature tests that 

produce an integer result, the total sum of which determines cloud phase as liquid, ice, or 

undetermined [Platnick et al., 2014; Platnick et al., 2017]. To a lesser extent, this is also true of 

the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP platform where cloud 

brightness temperature results from a single infrared channel are used to assign a series of 

follow-on spectral tests (near-infrared and infrared) designed to identify cloud phase/type in 5 

categories: liquid, super-cooled mixed-phase, opaque ice or deep convection, nonopaque ice, or 

overlapping clouds [Pavolonis et al., 2005]. A future NASA mission, the Plankton, Aerosol, 

Cloud, ocean Ecosystem (PACE) mission, with a notional launch date in the early 2020’s has, as 

part of its science goals, the generation of global cloud properties.  However, unlike the imagers 

discussed above, the PACE mission will not have infrared measurements, which motivates us to 

assess the ability to discriminate cloud thermodynamic phase retrievals from shortwave channels 

alone. 

The PACE imager, the Ocean Color Instrument (OCI), is being designed and built by 

NASA Goddard Space Flight Center (GSFC).  To meet the mission science goals, OCI is 

expected to be a hyperspectral instrument from 350 nm to 890 nm with 5 nm spectral resolution, 

plus six, discrete, shortwave spectral channels between 940 and 2250 nm; the radiometric 61 
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accuracy is currently specified at 3%.  The channel centers and widths for the OCI instrument, 

specific to cloud product studies, are listed in Table 1 (from the PACE Science Definition Team 

Report, pp. xxv and xxxi [Del Castillo et al., 2012]).  All of the channels will have 1 km spatial 

resolution at nadir.  

Table 1: Nominal specifications for principle PACE OCI channels for cloud product studies. The 

far-right column indicates the PACE shortwave channels that are in common with channels on 

the MODIS and VIIRS instruments. * indicates the measurement channels evaluated in this 

study.  69 

Central Wavelength (nm) Bandpass (nm) Channels in Common 

665 10 MODIS, VIIRS 

865* 40 MODIS, VIIRS 

763 5 MODIS 

940 25 MODIS 

1240 20 MODIS, VIIRS 

1378 10 MODIS, VIIRS 

1640* 40 MODIS, VIIRS 

2135* 50 MODIS 

2250* 50 VIIRS 

 The shortwave PACE channels listed in Table 1 are in common with channels on the 70 

MODIS and VIIRS instruments. The primary differences in the location and number of 71 

measurement channels is near 2 m (MODIS = 2135 nm, VIIRS = 2250 nm, PACE = 2135 and 72 

2250 nm) where water strongly absorbs and retrievals of particle size have the greatest 73 

sensitivity.  The lack of infrared channels on PACE prompts this question: Do the MODIS and 74 

VIIRS combined shortwave-infrared (SWIR) channels at 2135 and 2250 nm provide more 75 

information on cloud thermodynamic phase than each individual set of channels? An appropriate 76 

follow-on question is: Can we rigorously quantify the probability of liquid or ice cloud phase 77 

given a set of measurements with their associated uncertainties and a set of simulated solutions 78 

from cloud radiation models with their own set of associated uncertainties?  79 

Previously, we rigorously quantified the information content in the retrieval of cloud 80 

optical properties for an assumed cloud thermodynamic phase using the GEneralized Nonlinear 81 

Retrieval Analysis (GENRA) technique, a nonlinear statistical estimation approach derived from 82 

general inverse theory [Vukicevic et al., 2010; Coddington et al., 2012; Coddington et al., 2013].  83 

Specifically, these earlier studies quantified the probability distribution of cloud optical 84 

thickness, , and droplet effective radius, reff,  from shortwave cloud measurements. The basis of 85 

these retrievals is that differences in the absorption coefficient of liquid and ice water, which are 86 

significantly larger in the SWIR relative to the visible, result in the net cloud reflectance 87 

decreasing with particle size in the SWIR [Pilewskie and Twomey, 1987; Twomey and Cocks, 88 

1989]. Many cloud retrieval algorithms are based on combining measurement channels 89 

insensitive to water absorption that provide information on  with those sensitive to water 90 

absorption that provide information on both  and reff [Nakajima and King, 1990; Platnick et al., 91 

2003]. Other algorithms use combinations of measurement channels of sufficient difference in 92 
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sensitivity to water absorption to retrieve information on  and reff [Platnick et al., 2001; Meyer 93 

et al., 2016]. 94 

In this paper, we extend the GENRA technique to a binary thermodynamic phase 95 

parameter space (i.e. liquid or ice) and formalize the theory necessary to rigorously quantify 96 

cloud optical property information given this additional challenge. We apply a variety of metrics 97 

to quantify the formal information in a set of measurements. The well-known Shannon 98 

information content [Shannon and Weaver, 1949] is a measure of the information to be gained by 99 

making a measurement. The mutual and conditional information [Thomas and Cover, 2006], 100 

respectively, quantify the information in a measurement that is shared between physical 101 

parameters and the degree to which information about one parameter can be gained given 102 

complete knowledge of a different physical parameter that it shares information with.  The 103 

addition of mutual and conditional information to the GENRA technique is new for this work. 104 

We note that the extended GENRA methodology presented here is also relevant for retrieval 105 

studies where there are more than two equally plausible physical interpretations for a single set 106 

of measurements.  While the GENRA technique has thus far only been applied to cloud studies, 107 

its generalized nature can be practically extended to any retrieval making use of a metric of best-108 

fit between measured and simulated observations.   109 

Our results demonstrate how these information content diagnostics can be applied to 110 

evaluate cloud thermodynamic phase discrimination, to quantify the uncertainty in  and reff111 

retrievals, to quantify the correlations between the two retrievals, and to investigate the potential 112 

of the PACE OCI instrument in providing useful cloud property data records relative to MODIS 113 

and VIIRS. In Section 2, we provide the theory of the GENRA algorithm. In Section 3, we 114 

outline the implementation of simulated MODIS, VIIRS, and PACE cloud reflectance 115 

observations in GENRA. The approach to quantify the discrimination of cloud phase follows in 116 

Section 4.  In section 5, we present results of the probability of retrieving the correct 117 

thermodynamic phase over a dark surface and over a broad range of  and reff  for MODIS, 118 

VIIRS, and PACE. In Section 6, we show results to illustrate various entropy relationships and 119 

how these entropy relationships can be used as a visualization tool for cloud properties. Finally, 120 

in Section 7, we examine the hypothetical impact of improved radiometric accuracy (0.3%, 121 

around an order of magnitude improvement from currently orbiting imagers) on retrieved cloud 122 

properties.  Concluding statements are given in Section 8. 123 

2 The Theory of Generalized Inverse Problems 124 

The mathematical theory of general stochastic inverse problems, which is similar to 125 

standard Bayesian statistical estimation theory, is used to formulate the basis of the GENRA 126 

technique as introduced by Vukicevic et al. [2010].  The several studies [Vukicevic et al., 2010; 127 

Coddington et al., 2012; Coddington et al., 2013] that have applied GENRA to the 128 

characterization of cloud retrievals from passive shortwave (~350 to 2500 nm) remote sensing 129 

measurements were all performed for an assumed (liquid) cloud thermodynamic phase. Here, we 130 

provide the mathematical theory that explicitly illustrates the utility of the GENRA algorithm 131 

when there is more than a single model that relates the measured signal to a physical quantity of 132 

interest, such as occurs when equally valid cloud reflectances occur for ice clouds and water 133 

clouds. For consistency, we adopt the notation introduced in the companion paper, Vukicevic et 134 
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al. [2010], which is based on the formulation derived by Mosegaard and Tarantola [2002] and 135 

presented in Tarantola [2005] and Vukicevic and Posselt [2008]. 136 

We begin with the generalized inverse problem solution (Eq. 1) [Mosegaard and 137 

Tarantola, 2002; Tarantola, 2005; Vukicevic and Posselt, 2008; Vukicevic et al., 2010].  138 

𝑝𝑚(𝑚) =  ∫
1

𝛾∗

𝐷

[𝑝𝑝(𝑚)𝑝𝑑(𝑦)𝑝𝑡(𝜙(𝑚)|𝑚)]𝑑𝑦 
Eq. 1 

The stochastic (i.e. associated with a probability density function, pdf) solution to the 139 

generalized inverse problem is called the posterior pdf, pm(m), and it quantifies the distribution of 140 

parameters, m, based on knowledge from three sources of information: the measurements, y, a 141 

model that relates the measurements to the physical parameters of interest, (m), and a priori 142 

information about the parameters, if any exists.  The stochastic representations of the information 143 

from the measurements (data, “d”), model (theory, “t”), and a priori (“p”) information are 144 

denoted pd(y), pt((m)|m), and pp(m), respectively. An integration over the measurement space, 145 

D, removes the dependency on the observations so the posterior pdf is reported in dimensions of 146 

the parameter space, M, alone. * is commonly described as a normalization constant (for 147 

example, Vukicevic et al. [2010] and Coddington et al. [2012]) and it serves dual purposes: to 148 

make the integral of the posterior pdf equal to unity over the parameter space and to ensure the 149 

property of homogeneous probability distributions in the measurement space [Mosegaard and 150 

Tarantola, 2002; Tarantola, 2005].   151 

The role of homogeneous probability distributions is critical when making inferences 152 

from the general inverse problem solution where the representations of the parameter space are 153 

informed by more than one equally valid model solution and those model solutions have unequal 154 

volumes in the measurement space [Mosegaard and Tarantola, 2002; Tarantola, 2005]. In 155 

Equations 2-7, we derive the solution to the general inverse problem given in Equation 1. Special 156 

attention is given to the condition of homogeneous probability distributions and a definition of a 157 

measurement volume is provided. 158 

Stochastic information about parameters, m, is given by the mathematical conjunction of 159 

distributions of information from a model and the observations, y, in the joint parameter space, 160 

M, and measurement space, D, (i.e., the joint space, DxM) as denoted in Equation 2.  161 

𝑝(𝑚, 𝑦) =  
1

𝛾

𝑝1(𝑚, 𝑦)𝑝2(𝑚, 𝑦)

𝜈(𝑚, 𝑦)
Eq. 2 

In Equation 2, p1(m, y) defines the joint pdf of information from the model alone, p2(m, y) 162 

defines the joint pdf given the measurements and a priori information on the parameters, (m, y)  163 
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defines the joint homogeneous pdf that is a pdf of unit volume in the joint DxM space (as 164 

demonstrated in Tarantola [2005]), and p(m, y) is the joint posterior pdf.  165 

The constant of proportionality, , forces a sum to unity in the joint posterior pdf and 166 

explicitly depends on the joint homogenous pdf as shown in Equation 3. 167 

𝛾 =  ∫
𝑝1(𝑚, 𝑦)𝑝2(𝑚, 𝑦)

𝜈(𝑚, 𝑦)𝐷𝑥𝑀
Eq. 3 

By applying the general statistical relationships that relate the conditional, marginal, and 168 

joint pdfs, the model dependent joint pdf, p1(m, y), can be rewritten as shown in Equation 4. In 169 

doing so, we have made the assumption that the marginal pdf in the parameter space, p1(m), is 170 

equivalent to the homogenous pdf in parameter space, (m, y), prior to conjunction and 171 

independent of prior knowledge. Note that we have also substituted the usage of p1(y|m) with the 172 

nomenclature, pt((m)|m), to denote the role of the theoretical (subscript “t”) mathematical 173 

model, , in relating the simulated observations, y = (m) to the parameters of interest, m. 174 

𝑝1(𝑚, 𝑦) =  𝑝𝑡(𝜙(𝑚)|𝑚)𝜈(𝑚) Eq. 4 

The joint pdf of the measurements and a priori information on the parameters in the 175 

absence of the model, p2(m, y), can be separated into two terms by assuming independence 176 

between the prior information in the parameters and the information in the observations 177 

(Equation 5). The subscripts, “d” and “p”, are introduced to indicate the measured data 178 

(subscript “d”) and a priori (subscript “p”) knowledge, respectively.  179 

𝑝2(𝑚, 𝑦) =  𝑝𝑑(𝑦)𝑝𝑝(𝑚) Eq. 5 

A similar assumption of independence is made for the joint homogeneous pdf, (m, y), 180 

allowing it to be represented as the product of two separate marginal homogeneous distributions 181 

in the measurement space and the parameter space (Equation 6). 182 

𝜈(𝑚, 𝑦) =  𝜈(𝑦)𝜈(𝑚) Eq. 6 

In a final step, substituting Equations 3-6 into Equation 2 renders Equation 1, where * = 183 

 / (y) is the normalization factor dependent upon the constant of proportionality, , and the 184 
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marginal homogenous distribution in the measurement space, ν(y).  The dependency upon the 

measurements requires that this parameter be included inside the integral shown in Equation 1.  

Earlier in this section, we mentioned the necessity of defining a volume in the 

measurement space in order to satisfy the criteria of homogeneous probability distributions; 

Mosegaard and Tarantola [2002] present the definition of a measurement volume in the general 

inverse problem framework. Here, we use the specific example of a volume in the measurement 

space spanned by a grid of simulated observations where the N grid points represent specific 

combinations of physical parameters. In Earth remote sensing, these grids of simulated 

observations are commonly referred to as “look-up tables” (LUTs) and the physical parameters 

are “retrieved” by finding the point within the grid where the simulated observation best 

matches the measurement.   

Each nth point (of n = 1, 2, …, N total grid points) within the LUT grid of parameters, m, 

and simulated observations, y, has a volume element of space defined by dV(m, y) = ν(m, y) dm 

dy. The total volume of the LUT is obtained by computing the integral over all the simulated 

observations spanned by the range of parameters in the LUT: V(m, y) = ∫
𝑵

 ν(m, y) dm dy.
𝒏=𝟏

Homogeneous probability distributions are then those that ensure equal volumes for equal 

parameter spaces. In the example of two observational representations of the same parameter 

space (κ =2), a homogeneous probability distribution would be ensured through the use of a 

proportionality constant, α, defined by the following expression. 
203 

𝛼 =
𝑉𝜅=1(𝑚, 𝑦)

𝑉𝜅=2(𝑚, 𝑦)
Eq. 7 

In practical terms, the homogeneous probability distribution ensures that unique 204 

representations of observations that are equally valid in a physical sense are also equally 205 

weighted in a statistical sense.  If there is only a single representation of the parameters, the 206 

criteria of homogeneous probability distribution is met by default and the normalization factor, 207 

*, in Equation 1 is simply the constant of proportionality, , that forces a sum to unity in the 208 

joint posterior pdf.  209 

3 Representing Cloud Phase Discrimination as the Generalized Inverse Problem 210 

3.1 Data 211 

The PACE Ocean Color Instrument (OCI) is notionally a hyperspectral imager from 350 212 

nm to more than 800 nm with six discrete shortwave spectral channels (Table 1) [Del Castillo, 213 

2012]. Combinations of these channels also comprise subsets of the measurement channels used 214 

in cloud optical property retrievals (𝜏, reff) from the MODIS and VIIRS instruments, where the 215 

significant difference in the subsets occurs in the 2 𝜇m window (i.e. the longest shortwave 216 

channel for MODIS is at 2135 nm and the longest shortwave channel for VIIRS is at 2250 nm).  217 

In this study, we use the Collection 6 [Platnick et al., 2017] simulated cloud reflectance 218 

data obtained with the plane-parallel discrete-ordinates radiative transfer algorithm [Stamnes et 219 
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al. 1998] is used in the common MODIS/VIIRS Cloud Optical Properties product [Platnick et 

al., 2015] to also represent simulated PACE OCI cloud reflectance measurements. The single 

scattering properties of the liquid phase clouds, for an assumed modified gamma droplet size 

distribution of spherical droplets with an effective variance of 0.1, were derived from Mie 

calculations [Platnick et al., 2017]. For ice crystals, single scattering properties were obtained 

from a library of calculations based on severely roughened compact aggregates of eight solid 

columns [Yang et al., 2013] with a gamma particle size distribution of effective variance of 0.1 

[Platnick et al., 2017]. The MODIS and VIIRS LUT’s, separate ones for water and ice 

thermodynamic phase, contain the cloud reflectance as a function of spectral channel and over 

broad ranges in the following variables: effective radius (2-30 𝜇m for liquid clouds and 5-60 𝜇m 

for ice clouds), optical thickness (0.05 to 160 irregularly gridded, but subsequently re-gridded to 

a resolution of ~ 2), solar zenith angle, sensor zenith angle, and azimuth angle. In this study, we 

arbitrarily select a cosine solar zenith angle of 0.9, cosine sensor zenith angle of 0.9, and a sensor 

relative azimuth angle of 60 degrees for our analysis.  A black surface albedo is assumed.  233 

3.2 Representing the pdfs for the Model, Measurement, and Prior Information 234 

Previous studies using GENRA show that LUTs of precomputed radiative transfer 235 

calculations serve as a discretized forward model function associating the model solution in the 236 

measurement space to every value of the parameter, or combinations of parameters, in the 237 

parameter space [Vukicevic et al., 2010; Coddington et al., 2012; Coddington et al., 2013]. This 238 

implies that the LUTs of cloud reflectance for n = 1, 2, …N combinations of  and reff 239 

(N=N*Nreff) are used for deriving the N model pdfs, pt((m)| m), on a discrete grid of 240 

measurement values. In this work,  =2 unique LUTs map two simulated measurements of liquid 241 

and ice cloud reflectance to a common point on the grid of discrete values in the parameter 242 

space.  243 

Each of the N model pdfs represents a distribution of model uncertainty in the 244 

measurement space that results, in general, from a combination of model structural deficiencies 245 

and uncertainty in model ancillary parameters. The model structural deficiencies are typically 246 

associated with approximations used when deriving the theoretical model equations and with a 247 

method of solving these equations numerically.  Both systematic and random errors could result 248 

from these deficiencies and they could be represented stochastically for the purpose of solving 249 

the parameter estimation problem expressed in Equation 1.   250 

The ancillary parameters are essential forward model inputs but are not retrieved 251 

parameters. The choices for these ancillary parameters, and how well they represent true 252 

conditions or the variability in the true conditions, leads to uncertainties in the model results. 253 

Some examples of ancillary forward model inputs that affect the simulation of cloud reflectance 254 

include the surface albedo that determines the proportion of incident light that is reflected by a 255 

surface, the vertical profile of atmospheric molecular gases, the assumed size distribution of 256 

cloud particles in the liquid and ice cloud models, and the assumed crystal habitat in the ice 257 

cloud model. Therefore, the distributions of the model solutions in the measurement space are a 258 

statistical representation of the uncertainty in the inputs to the forward model and the model 259 

structural deficiencies.  As in the previous studies we assume a relatively simple Gaussian-260 

distributed and wavelength-independent model uncertainty of 2%, which is reasonable for 261 

establishing a baseline and for ocean albedo surfaces, but is not generally true (see, for example 262 
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[Platnick et al., 2017; Coddington et al., 2012]). MODIS cloud retrieval uncertainties due to 

errors in the effective variance of liquid and ice particle size distributions are on the order of 2% 

[Platnick et al., 2017]. Estimating and using a more sophisticated stochastic representation of the 

model uncertainty is beyond the scope of this study.  

The pdf of the stochastic measurement, pd(y), is the probability of a measurement taking 

discrete values between yi and yi +∆y that span a range of values given the measurement 

uncertainty that is described by random and systematic errors.  In this study, the quantity used in 

the actual retrieval is cloud reflectance, derived from observations of reflected cloud radiance, 

which is a function of satellite viewing and sun zenith angles, and normalized by the measured 

downwelling irradiance.  When defining pd(y) we assume that the cloud reflectance has 

Gaussian-distributed and wavelength-independent random errors of 3%; this assumption is based 

on characterization of the MODIS and VIIRS instruments and on-orbit performance monitoring 

[e.g., Xiong et al., 2016; Uprety and Cao, 2015; Xiong et al., 2014]. The measurement pdf is 

defined on the same discrete grid of measurement values as the model pdfs described above. 

The pdf of prior information in the τ and reff parameters, pp(m), represents probabilities of 

the parameters taking values between mk and mk +∆m from a range of physically plausible values 

that are shared between the κ = 2 representations cloud reflectance LUT’s simulated using the 

ice cloud and liquid cloud models.  In this study, we define the range of physically plausible 

values that are shared by ice clouds and liquid clouds as optical thickness spanning τ = 0.5 to 

160 and effective radius spanning reff = 5 to 30 µm. We are guided by statistics of global cloud 

properties [e.g., King et al., 2013; Platnick et al. 2017] when making a priori assumptions that reff 

values less than 5 µm occur only with liquid clouds and reff values greater than 30 µm occur only 

with ice clouds. In the absence of other information for the shared parameter space, the prior pdf 

can take uniform values (i.e., all of the values of the shared parameter range are a priori equally 

likely). This condition could be improved if additional information would become available from 

other independent measurements.  

∆y corresponds to a unit discretization in the measurement space and can be interpreted 

as the minimum measurement error.  Likewise, ∆m is a unit interval in the parameter space that 

can be interpreted as the maximum retrieval precision [Vukicevic et al., 2010; Coddington et al., 

2012]. 292 

3.3 Computing the Likelihood Function 293 

The likelihood function is the probability of the observations as a function of the retrieval 294 

parameters and provides a metric of how well particular choices of model parameters describe 295 

the data [Tarantola, 2005]. As shown in Equation 8a, for every n grid points (of N total), a 296 

convolution (i.e., a pointwise multiplication) of the nth model pdf and the measurement pdf on 297 

the discrete grid of measurement values is obtained. The convolutions are performed separately 298 

for each of the  = 2 representations of the model pdfs.  299 

𝑝𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
𝑛 (𝜅, 𝑚) =  ∫

1

𝛾∗
[𝑝𝑑(𝑦)𝑝𝑡

𝑛(𝜙(𝑚)|𝑚)]
𝐷

𝑑𝑦 Eq. 8a 
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We enforce the criteria for homogeneous probability functions (see Equation 7) and 

compute the respective volumes of the measurement space for all κ groups of likelihood 

functions. These volumes  are then used to derive the factor, α, (Equation 8b) that ensures that 

equally valid physical representations of the model pdfs are equally weighted statistically 

(Equation 8c). It is acceptable to switch the numerator and denominator in Equation 8b. 

However, if doing so, the normalization applied in Equation 8c would then need to be applied 

to the κ = 2 representation instead. 306 

𝛼 =
∑ ∑ 𝑝𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑛 (𝜅 = 1, 𝑚)𝑦𝑛

∑ ∑ 𝑝𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
𝑛 (𝜅 = 2, 𝑚)𝑦𝑛

Eq. 8b 

𝑝𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝜅 = 1, 𝑚) =
𝑝𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝜅 = 1, 𝑚)

𝛼 Eq. 8c 

3.4 Computing the Posterior Retrieval pdf 307 

In the final step, the multiplication of the likelihood function of the homogeneous 308 

probability functions derived in Equations 8a-8c with the pdf of prior information about the 309 

parameters forms the posterior pdf (Equation 9). The multiplication is performed for each of the 310 

n grid points, separately for each , to represent the  unique representations of the likelihood 311 

function and prior information statistics. The posterior pdf is the 2-dimensional (2-D) map of 312 

probabilities in the optical thickness and effective radius parameter space, m, for each of the    313 

cloud thermodynamic phase possibilities. The normalization constant, 𝛾 is used to make the 314 

integral over all dimensions of the posterior pdf space equal to unity. 315 

𝑝𝑚
𝑛 (𝜅, 𝑚) =  

1

𝛾
𝑝𝑝

𝑛(𝜅, 𝑚)𝑝𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
𝑛 (𝜅, 𝑚), 𝑛 𝜖 (1, 𝑁) Eq. 9 

The steps described in Sections 3.2 – 3.4 are iterated for each measurement used in the 316 

retrieval.  To quantify the cumulative effect of the measurements at all retrieval wavelengths, the 317 

prior pdf (beginning with the measurement at the 2nd retrieval wavelength) would be serially 318 

updated by using the posterior pdf for the measurement at the previous retrieval wavelength 319 

introduced into the algorithm. For the measurement at the first retrieval wavelength, the prior pdf 320 

is assumed to be uniform, which means the prior pdf is weighted equally for all physically 321 

plausible values.  For independent measurement pdfs, the cumulative result from the serial 322 

processing described above would be no different from that of a batch-style processing where 323 

multiple measurements are simultaneously used to update the posterior estimate.  GENRA can 324 

also be applied in an alternative approach to characterize the retrieval at each individual retrieval 325 

wavelength as opposed to the cumulative impact described above. This latter approach requires 326 

that the prior pdf is ascribed a uniform distribution at each retrieval wavelength introduced into 327 

the algorithm (i.e., the prior pdf at a subsequent iteration is not updated using the posterior pdf 328 

from the former iteration).  Examples of both treatments of the prior pdf for characterizing 329 
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passive shortwave cloud retrievals are shown in Vukicevic et al. [2010] and Coddington et al. 330 

[2012, 2013].  331 

4 Characterizing Cloud Phase Discrimination Using the Posterior Retrieval pdf 332 

The information about the possible discrete values of cloud optical thickness, droplet 333 

effective radius, and cloud thermodynamic phase contained in the posterior pdf can be used to 334 

characterize the cloud property retrievals. In this section, we discuss several standard retrieval 335 

diagnostics derived from the posterior pdf.  These include the marginal probability distributions 336 

and maximum a posteriori values of the parameters and the Shannon Information Content 337 

[Shannon and Weaver, 1949] of the measurements. We also discuss two additional information 338 

content metrics that, to our knowledge, have not been previously applied to the study of cloud 339 

optical properties. These include the mutual and conditional information contents [Cover and 340 

Thomas, 2006; Wang and Shen, 2011] that respectively quantify the information in a 341 

measurement that is shared between parameters and the information in a measurement that 342 

remains in one parameter given complete knowledge of information in another parameter. 343 

i. The marginal pdfs for each parameter, the mean values, and associated error variance344 

(i.e., retrieval precision) statistics.  The marginal pdfs are obtained by integrating the posterior 345 

pdf (Equation 9) over the parameter space.  When the integration is performed over the 346 

parameter space for all  = 2 cloud thermodynamic phase possibilities, the resulting marginal 347 

pdfs in optical thickness (Equation 10a) and effective radius (Equation 10b) represent the error 348 

variances in the retrieval parameters for the joint parameter space spanned by the liquid and ice 349 

cloud reflectances. Performing the integration over the parameter space separately for each cloud 350 

thermodynamic phase results in marginal pdfs in  (Equation 10c) and reff (Equation 10d) that 351 

represent the error variance in the retrieval parameters for each specific cloud phase alone.  The 352 

mathematical sum of the marginal pdfs for a specific parameter for each  cloud thermodynamic 353 

phase, for example optical thickness (Equation 10c), is equivalent to the marginal pdf in optical 354 

thickness over the joint cloud thermodynamic phase space (Equation 10a).  355 

𝑝(𝜏 = 1, … 𝑁𝜏) =  ∫ ∫ 𝑝𝑚
𝑛 (𝜅, 𝜏, 𝑟𝑒𝑓𝑓)

𝑁𝑟𝑒𝑓𝑓

𝑟𝑒𝑓𝑓=1

2

𝜅=1

𝑑𝑟𝑑𝜅 Eq. 10a 

𝑝(𝑟𝑒𝑓𝑓 = 1, … 𝑁𝑟𝑒𝑓𝑓) =  ∫ ∫ 𝑝𝑚
𝑛 (𝜅, 𝜏, 𝑟𝑒𝑓𝑓)

𝑁𝜏

𝜏=1

2

𝜅=1

𝑑𝜏𝑑𝜅 
Eq. 10b 

𝑝(𝜅, 𝜏 = 1, … 𝑁𝜏) =  ∫ 𝑝𝑚
𝑛 (𝜅, 𝜏, 𝑟𝑒𝑓𝑓)

𝑁𝑟𝑒𝑓𝑓

𝑟𝑒𝑓𝑓=1

𝑑𝑟 
Eq. 10c 

𝑝(𝜅, 𝑟𝑒𝑓𝑓 = 1, … 𝑁𝑟𝑒𝑓𝑓) =  ∫ 𝑝𝑚
𝑛 (𝜅, 𝜏, 𝑟𝑒𝑓𝑓)

𝑁𝜏

𝜏=1

𝑑𝜏 
Eq. 10d 
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The marginal pdf of cloud thermodynamic phase (Equation 10e) is obtained by 356 

integrating the posterior pdf over the space spanned by the parameter ranges in optical thickness 357 

and effective radius. 358 

𝑝(𝜅) =  ∫ ∫ 𝑝𝑚
𝑛 (𝜅, 𝜏, 𝑟𝑒𝑓𝑓)

𝑁𝑟𝑒𝑓𝑓

𝑟𝑒𝑓𝑓=1

𝑁𝜏

𝜏=1

𝑑𝑟𝑑𝜏 Eq. 10e 

The probability of cloud phase discrimination (Equation 11a-11b) is then the percent 359 

contribution of the marginal pdf for all thermodynamic phase possibilities that is explained by 360 

each of the respective  cloud thermodynamic phase possibilities. 361 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘=1(%) =  
𝑝(𝜅 = 1)

∑ 𝑝(𝜅)2
𝜅=1

 ×  100 
Eq. 11a 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘=2(%) =  
𝑝(𝜅 = 2)

∑ 𝑝(𝜅)2
𝜅=1

 ×  100 
Eq. 11b 

The statistical mean of the respective marginal pdfs can be used to represent the retrieved 362 

cloud properties. However, only when the posterior pdf is symmetrical (e.g., Gaussian 363 

distributed) will the statistical mean of the marginal pdfs be equivalent to the maximum a 364 

posteriori solution of the retrieval (discussed next). Prior studies of cloud property retrievals 365 

using general inverse theory have shown that Gaussian assumptions in the posterior pdf are not 366 

valid for regions of the parameter space where the forward model is nonlinear (i.e., the 367 

reflectance is nonlinearly related to the parameters  and reff).  368 

Higher-order statistics that are useful numerical metrics of the central tendency, degree of 369 

variation, and the balance of the distribution of the parameters around the center value are key 370 

strengths of using general inverse theory approaches. These metrics are computed from the joint 371 

and marginal probability distributions and are discussed in standard statistical textbooks, for 372 

example Wilks [2011]. For example, the interquartile range (IQR), defined as the difference 373 

between the upper and lower quartiles (where a quartile is the midpoint between the median and 374 

the upper and lower extremes of the distribution) of the marginal pdfs is the most common 375 

metric of dispersion in the retrieved parameters [Wilks, 2011] and larger values of IQR reflect a 376 

greater spread in the middle half of the data. Skewness measures a lack of symmetry in the 377 

distribution or parameter values and a positive skewness, for example, indicates a distribution 378 

with a long (right) tail whereas a distribution with zero skewness is symmetric around the central 379 

value. Lastly, the joint and marginal pdfs provide key information on multimodal solutions 380 

where a non-unique relationship exists between the parameters and the observations. Skewed 381 

distributions and non-unique solutions have been observed in distributions of cloud optical 382 
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properties [Coddington et al., 2013] and cloud microphysical properties [Posselt and Vukicevic, 383 

2010; Posselt, 2016].    384 

ii. Maximum a posteriori estimate (MAP) of the retrieval. The maximum a posteriori385 

value is the most likely value of the parameters and occurs at the maximum value of the posterior 386 

pdf,  387 

(𝜏∗ , 𝑟𝑒𝑓𝑓
∗),    max[𝑝𝑚

𝑛 (𝜅∗ , 𝜏, 𝑟𝑒𝑓𝑓)] = 𝑝𝑚
𝑛 (𝜏∗ , 𝑟𝑒𝑓𝑓

∗)

where * is the thermodynamic phase with the highest probability of discrimination as defined 388 

by Equations 11a-11b. The maximum a posteriori estimate for the cloud thermodynamic phase 389 

that does not have the highest probability is also of great interest for the retrieval of cloud 390 

properties as it identifies the (, reff) retrieval solution when thermodynamic phase has been 391 

incorrectly identified. 392 

iii. The Shannon information content of the measurements. Shannon information393 

[Shannon and Weaver, 1949] is the measure of information gained by making a measurement 394 

and it is derived from the measure of entropy (disorder), H. The entropy can be computed from 395 

the joint posterior pdf (Equation 12a) and the marginal pdfs (Equations 12b-c). High values of 396 

entropy equate to high levels of disorder where many parameter values are equally likely in a 397 

retrieval. Conversely, low entropy equates to low disorder, indicating fewer parameter values are 398 

likely in a retrieval. Since we use the logarithm with base 2, the units of information are in bits. 399 

𝐻𝜅(𝜏, 𝑟𝑒𝑓𝑓) = − ∑ 𝑝𝑚
𝑛 (𝜏, 𝑟𝑒𝑓𝑓)𝑙𝑜𝑔2

𝑁=𝑁𝜏×𝑁𝑟𝑒𝑓𝑓

𝑛=1

𝑝𝑚
𝑛 (𝜏, 𝑟𝑒𝑓𝑓) Eq. 12a 

𝐻𝜅(𝜏) = − ∑ 𝑝𝑛(𝜏)𝑙𝑜𝑔2

𝑁𝜏

𝑛=1

𝑝𝑛 (𝜏) Eq. 12b 

𝐻𝜅(𝑟𝑒𝑓𝑓) = − ∑ 𝑝(𝑟𝑒𝑓𝑓)𝑙𝑜𝑔2

𝑁𝑟𝑒𝑓𝑓

𝑛=1

𝑝(𝑟𝑒𝑓𝑓) Eq. 12c 

The Shannon information content, SIC, (Equation 13) is inversely related to entropy. As 400 

entropy decreases, the Shannon information increases indicating increased retrieval precision. In 401 

Equation 13, Hprior is the entropy of the prior pdf, 𝒑𝒑𝒓𝒊𝒐𝒓
𝒏 , and Hpost is the entropy of the posterior402 

pdf, 𝒑𝒎
𝒏 .  Using the joint representation of the posterior pdf and prior pdf when computing the 403 

SIC characterizes the information content of the retrieval for all possible combinations of (, reff) 404 

in each respective thermodynamic phase. Alternatively, using the marginal posterior pdfs of the 405 

parameters and marginal prior pdfs characterizes the information content in optical thickness 406 
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separately from the information content in effective radius, for each respective thermodynamic 407 

phase. 408 

𝑆𝐼𝐶𝜅 = 𝐻𝑝𝑟𝑖𝑜𝑟 − 𝐻𝑝𝑜𝑠𝑡 Eq. 13 

iv. The conditional information of the measurements. A single measurement may provide409 

information about more than one parameter and the uncertainty (i.e. entropy) in the parameters 410 

can be quantified in different ways. The “conditional” entropy is the entropy of a parameter that 411 

remains (after making a measurement) when additional information is incorporated to give 412 

complete knowledge of another parameter [Thomas and Cover, 2006; Wang and Shen, 2011]. 413 

The complete knowledge of the other parameter could be obtained in different ways depending 414 

upon the application. For example, the necessary additional information could come from in-situ 415 

data, a retrieval from another platform, or making an assumption about the parameter’s value. 416 

The conditional entropy of optical thickness, H(| reff), (Equation 14a) is the entropy when 417 

conditioned on knowledge of effective radius averaged over all possible values that effective 418 

radius may take in the parameter range.  The conditional entropy of effective radius H(reff| ), can 419 

be similarly defined (Equation 14b).  High values of conditional entropy represent large 420 

remaining uncertainty (i.e. low precision) in a parameter despite complete knowledge of another, 421 

correlated, parameter.  Conversely, low values of conditional entropy represent that complete 422 

knowledge in the second, correlated parameter has reduced the uncertainty (i.e. higher precision) 423 

in the first parameter.  In the limiting condition where one parameter is completely determined 424 

by another parameter, the conditional entropy of the first parameter is zero. 425 

𝐻𝑘(𝜏|𝑟𝑒𝑓𝑓) = ∑ 𝑝𝑚
𝑛 (𝜏, 𝑟𝑒𝑓𝑓)𝑙𝑜𝑔2𝑝𝑚

𝑛 (𝜏|𝑟𝑒𝑓𝑓)

𝑁

𝑛=1

 Eq. 14a 

𝐻𝑘(𝑟𝑒𝑓𝑓|𝜏) = ∑ 𝑝𝑚
𝑛 (𝜏, 𝑟𝑒𝑓𝑓)𝑙𝑜𝑔2𝑝𝑚

𝑛 (𝑟𝑒𝑓𝑓|𝜏)

𝑁

𝑛=1

 

Eq. 14b 

Through applying the relationships that relate the conditional, marginal, and joint pdfs, the 426 

conditional entropy can be equated to the difference of the Shannon entropy of the parameter 427 

(Equation 12b or 12c) and the entropy in the measurement shared by the parameters (i.e. the 428 

mutual entropy, see next subsection, v) [for example, Wang and Shen, 2011]. 429 

We define the conditional information content, CIC, as the change in conditional entropy 430 

in the posterior pdf relative to a prior state (Equations 15a-15b). By this definition, the 431 

conditional information content is inversely related to conditional entropy similar to how the 432 

Shannon information content is inversely related to entropy. A reduction in conditional entropy 433 

in the posterior pdf relative to a prior state represents that ancillary knowledge in a parameter has 434 
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reduced the uncertainty in the other parameter (i.e., the conditioning of one parameter effects the 435 

probability of another) and the conditional information content has increased. 436 

𝐶𝐼𝐶𝜅(𝜏) = 𝐻𝑘(𝜏|𝑟𝑒𝑓𝑓)
𝑝𝑟𝑖𝑜𝑟

− 𝐻𝑘(𝜏|𝑟𝑒𝑓𝑓)
𝑝𝑜𝑠𝑡

Eq. 15a 

𝐶𝐼𝐶𝜅(𝑟𝑒𝑓𝑓) = 𝐻𝑘(𝑟𝑒𝑓𝑓|𝜏)
𝑝𝑟𝑖𝑜𝑟

− 𝐻𝑘(𝑟𝑒𝑓𝑓|𝜏)
𝑝𝑜𝑠𝑡

Eq. 15b 

v. The mutual information of the measurements. The mutual entropy, I, quantifies how437 

much of the information in a parameter is conveyed by another parameter [Cover and Thomas, 438 

2006; Wang and Shen, 2011]; it is therefore a measure of how two parameters share the 439 

information from a single measurement. It is equivalent to the relative entropy (equivalent to the 440 

Kullback-Leibler distance [Cover and Thomas, 2006]) of the joint pdf and the product of the 441 

marginal distributions of the parameters as shown in Equation 16. In the limiting condition of 442 

complete independence between the parameters, 𝒑𝒎
𝒏 (, reff) = p()p(reff) and the mutual entropy is 443 

zero representing that knowledge in optical thickness does not give any information in effective 444 

radius and vice versa. When one parameter is completely determined by a second parameter, the 445 

conditional entropy of the first parameter is zero and, by extension, the mutual entropy between 446 

the parameters is a theoretical maximum defined by the entropy of the first variable alone. 447 

𝐼𝜅(𝜏; 𝑟𝑒𝑓𝑓) = ∑ 𝑝𝑚
𝑛 (𝜏, 𝑟𝑒𝑓𝑓)𝑙𝑜𝑔2

𝑝𝑚
𝑛 (𝜏, 𝑟𝑒𝑓𝑓)

𝑝(𝜏)𝑝(𝑟𝑒𝑓𝑓)

𝑁

𝑛=1

Eq. 16 

Small values of mutual entropy indicate little shared information (i.e., dependencies, or 448 

correlations) between the parameters and, therefore, only a small potential for reducing retrieval 449 

uncertainty in one parameter by gaining knowledge in another parameter. Conversely, high 450 

values of mutual entropy indicate a greater degree of shared information and larger dependencies 451 

amongst the parameters, and, therefore, a correspondingly larger potential for reducing retrieval 452 

uncertainties in one parameter through ancillary knowledge of another parameter. Examples of 453 

ways to gain ancillary knowledge in the second parameter include the use of independent 454 

measurements or retrievals, and the making of retrieval assumptions. 455 

We define the mutual information content, MIC, as the change in mutual entropy in the 456 

posterior pdf relative to a prior state (Equation 17). By this definition, increasingly positive 457 

values of the mutual information content represent an increase in shared information between the 458 

parameters by the act of making a measurement and vice versa for decreasing values of the 459 

mutual information content. In the absence of prior knowledge, we assume complete 460 
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independence in the parameters in which case the mutual entropy, Iprior, is equal to zero by the 461 

properties of the joint distribution for independent variables. 462 

𝑀𝐼𝐶𝜅 = −[𝐼𝑝𝑟𝑖𝑜𝑟 − 𝐼𝑝𝑜𝑠𝑡] Eq. 17 

The Shannon information, mutual information, and conditional information are computed 463 

separately for each  thermodynamic phase and the results for the * thermodynamic phase with 464 

the highest probability of discrimination would represent the respective information content 465 

metrics in  and reff that correspond to the maximally likely retrieval. In all entropy definitions 466 

shown in this section, we have used logarithms of base 2, therefore, the resulting unit of entropy 467 

is bits. 468 

vi. Summary of entropy and information relationships. The conditional entropies and469 

conditional information contents do not have symmetric properties, which means the conditional 470 

information gain in one parameter is not necessarily equivalent to the conditional information 471 

gain in another. This is in contrast to the mutual information, which does have symmetric 472 

properties.  473 

The mathematical relationships between the joint, marginal, conditional, and mutual 474 

entropy are provided in Equation 18.  Figure 1 is a Venn diagram that depicts an example of 475 

these relationships for  and reff parameters. In Figure 1, we have depicted a different uncertainty 476 

in the optical thickness and effective radius parameters by using circles of different sizes is to 477 

represent a hypothetical case where the  retrieval has smaller entropy and correspondingly 478 

larger information content than the retrieval of reff. This choice emphasizes the non-symmetry in 479 

the conditional entropies of the parameters, H(| reff) and H(reff| ). The mutual information, I(; 480 

reff), however, has symmetric properties. The choice of using a circle in Figure 1 denotes 481 

symmetrically distributed uncertainties, such as occurs with Gaussian distributions. However, we 482 

note that the entropy and information relationships derived in this section are valid regardless of 483 

how the uncertainties are distributed.  484 

𝐼𝜅(𝜏; 𝑟𝑒𝑓𝑓) = 𝐻𝑘(𝜏) + 𝐻𝑘(𝑟𝑒𝑓𝑓) − 𝐻𝑘(𝜏, 𝑟𝑒𝑓𝑓)

= 𝐻𝑘(𝜏) − 𝐻𝑘(𝜏|𝑟𝑒𝑓𝑓)

 = 𝐻𝑘(𝑟𝑒𝑓𝑓) − 𝐻𝑘(𝑟𝑒𝑓𝑓|𝜏) 

Eq. 18 
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485 
486 

Figure 1: The information in a spectral measurement can be shared amongst parameters. The generalized inverse 487 

problem (Equation 1) provides the mapping from measurement space to the parameter space(s) for this relationship. 488 

This Venn diagram depicts a hypothetical example of the relationships in the marginal, joint, and conditional 489 

entropies for cloud optical thickness, , and droplet effective radius, reff, and the mutual information shared by the 490 

parameters after a spectral measurement of cloud radiation provides information on both  and reff parameters. The 491 

sum of the marginal information in optical thickness, (H(): pink circle encircled by dashed line) and effective 492 

radius (H(reff): blue circle encircled by dashed line) is not equal to the joint information of the parameters H(, reff): 493 

solid black curve at the outer boundaries of the pink and blue circles) because optical thickness and effective radius 494 

share mutual information (I(; reff): purple shaded region at the intersection of the blue and pink shaded circles).   495 

We conclude this section with a list of useful principles summarizing the various entropy 496 

relationships. In our analysis, we test these principles at each iteration of the GENRA algorithm 497 

to ensure the robustness of our diagnostic results. 498 

• Entropy is non-negative. The marginal entropy is equal to zero if and only if a parameter499 

is completely determined. The joint entropy of more than one parameter is equal to zero500 

if and only if all parameters are completely determined.501 

• Entropy has a theoretical upper bound that is achieved when the parameter is uniformly502 

distributed. A number of studies have utilized this theoretical upper bound in order to503 
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present Shannon information content results on a scale ranging from zero to unity 504 

[Vukicevic et al., 2010; Coddington et al., 2012, Coddington et al., 2013]. 505 

• The joint entropy is always at least equal to the entropies of the individual parameters506 

alone (i.e., the joint entropy cannot be less than any of the individual marginal entropies).507 

In other words, adding a new parameter can never reduce the uncertainty.508 

• The joint entropy is never larger than the sum of the marginal entropies in each individual509 

parameter. Coddington et al. [2012] illustrated this principle for cloud optical properties510 

using hyperspectral shortwave cloud albedo measurements.511 

• Mutual entropy is non-negative. This provides a theoretical lower bound to the mutual512 

entropy.513 

• Mutual entropy has a theoretical upper bound that occurs in cases where the parameters514 

are identical (i.e., when all information in parameter ‘X’ is conveyed by parameter ‘Y’ or515 

vice versa).  In this case, the mutual entropy is bounded at the upper end by the smaller of516 

the theoretical maxima in either parameter when the parameters are uniformly distributed.517 

5 The Probability of Retrieving the Correct Thermodynamic Phase 518 

Here we provide the results from experiments that quantify the information content in 519 

optical thickness, effective radius, and thermodynamic phase from observations of simulated 520 

shortwave cloud reflectance data.  The results are presented for specific cloud (, reff) pairs and 521 

over a broad range in cloud  and reff using different combinations of measurement channels that 522 

are used in the operational cloud retrievals algorithms by the MODIS and VIIRS instruments and 523 

have been identified for operational cloud retrievals in the conceptual instrument design study 524 

for the future PACE imager. Since the Collection 6 MODIS and similar VIIRS cloud retrieval 525 

algorithms also incorporate information at infrared (IR) channels, we refer to our experiments 526 

using the channel combination of 865 nm, 1640, and 2130 nm as “MODIS-SW”, where the 527 

“SW” refers to “shortwave”.  Similarly, we refer to our experiments with the channel 528 

combinations of 865 nm, 1640, and 2225 nm as “VIIRS-SW”.  Since the PACE imager will not 529 

have an IR sensor, experiments using the channels combinations of 865 nm, 1640 nm, 2130 nm, 530 

and 2225 nm are simply referred to as “PACE”.  531 

Unless specified otherwise, all results assume a black surface albedo, a wavelength-532 

independent measurement uncertainty of 3%, a model uncertainty of 2%, a cosine of the sensor 533 

zenith angle of 0.9, a cosine of the solar zenith angle of 0.9, an azimuthal angle of 60 degrees, 534 

and vertically and horizontally homogeneous clouds.  By maintaining this consistency across 535 

experiments, the following results quantify the impacts of measurement channel location and 536 

number on the information content of cloud optical thickness, effective radius, and 537 
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thermodynamic phase from current and future passive imagers used to provide the global record 538 

of cloud properties.  539 

5.1 The Impacts of Number and Location of Measurement Channels 540 

The 2-D posterior joint pdfs that correspond to the final retrieval with all wavelengths of 541 

simulated cloud reflectance measurements are shown in Figure 2 (top row) for a “true” cloud 542 

type of  =10, reff = 10 m, and phase = liquid. This particular example was chosen because at 543 

moderate cloud optical thickness values and larger (  10) passive methods to retrieve cloud 544 

optical properties have demonstrated accurate performance [Platnick et al., 2017]. The results 545 

show that the posterior retrieval pdfs are not Gaussian and that there are overlapping 546 

contributions to the joint posterior pdf from the solution space identified as liquid water phase 547 

(identified by blue-green contours) and as ice phase (pink-purple contours). The percentage to 548 

which the total probability of the liquid phase solution space contributes to the total probability 549 

of the joint phase solution space quantifies the percent probability of a liquid phase retrieval.  550 

The percent probability of correct phase discrimination for this example is 35% for MODIS-SW, 551 

63% for VIIRS-SW, and 70% for PACE.  Values around 50% theoretically represent an 552 

ambiguous phase retrieval because the measurement and model uncertainties assumed in this 553 

study are idealized uncertainties that may over- or under-estimate the true uncertainties of a 554 

specific atmospheric state and measurement conditions. Identifying the bounds of this range is 555 

left to future work. The maximum a posteriori estimates of cloud optical thickness and effective 556 

radius for both cloud phases are annotated on the plot. The results show, given correct phase 557 

identification, that the maximum a posteriori estimates for the liquid cloud phase are centered on 558 

the “truth” for MODIS-SW, VIIRS-SW, and PACE channel combinations, which indicates a 559 

non-biased (i.e. accurate) retrieval solution for the given simulated measurement conditions. This 560 

result is expected for the experiments with the simulated “truth” and verifies the accuracy of the 561 

numerical procedure in GENRA. Evaluating retrieval bias (i.e. a departure of the maximum a 562 

posteriori estimate away from the true value) is only possible when the “truth” is known, for 563 

example as occurs in a theoretical study like this one or when other, independent measurements 564 

can be used to inform the truth [Vukicevic et al., 2010]. In all channel combinations, inaccurately 565 

identifying cloud phase as ice would result in retrieved properties for an optically thinner ice 566 

cloud of smaller droplet size;  =8, reff = 7 m for MODIS-SW, and  =6, reff = 5 m for VIIRS-567 

SW and PACE. 568 

The middle and lower rows of Figure 2 show sequences of marginal pdfs of optical 569 

thickness and effective radius, respectively. “Marginal” distributions are those from a subset of 570 

the variables. For example, the “joint” marginal of  or reff  is the distribution in this respective 571 

parameter given both cloud phase solution spaces (i.e liquid and ice). The marginal pdfs in  or 572 

reff  then further subset the respective joint marginal pdf into the distribution for a single cloud 573 

phase solution space (i.e liquid or ice).  Obtaining the marginal pdf for a parameter requires an 574 

integration over the other parameters (Equations 10a-e). When the 2-D joint posterior pdf departs 575 

from a Gaussian-distribution there is a nonlinear coupling between cloud optical thickness and 576 

droplet effective radius, which leads to a discrepancy due to an artifact of integration when 577 

interpreting the maximum a posteriori values obtained from the joint marginal (or marginal) pdfs 578 

relative to the 2-D joint marginal pdf (see also Posselt [2016], Table 4).  The degree of 579 

discrepancy will depend upon the shape of the 2-D joint posterior pdf [Coddington et al., 2013]. 580 

For these reasons, in this work we consider the “real” solution to be the 2-D joint posterior pdf. 581 



20 

The 1-D pdf provides context and the relative contributions from the different thermodynamic 582 

phase spaces.  583 

The middle row of Figure 2 shows the sequence of marginal pdfs of optical thickness for 584 

the MODIS-SW, VIIRS-SW, and PACE measurement channel combinations. The joint marginal 585 

pdf of optical thickness (Equation 10a) is in black and the contributions from the liquid and ice 586 

solution spaces (Equation 10c) are shown in green and pink, respectively. The results show that 587 

the joint pdf in optical thickness is centered at the true value of  = 10 and that contributions 588 

from the liquid cloud phase solution space explain the majority of the joint marginal distribution.  589 

The contributions from the ice phase solution space broaden the joint marginal distribution to 590 

smaller optical thickness values.  591 

The bottom row in Figure 2 is the sequence of marginal pdfs of droplet effective radius 592 

for the varying channel combinations. Here, the results are more diverse.  For the MODIS-SW 593 

solution, the dominant contribution to the joint marginal pdf of effective radius (Equation 10b) 594 

comes from the ice solution space, while the dominant contribution comes from the liquid 595 

solution space for the VIIRS-SW and PACE (Equation 10d).  There is also more diversity in the 596 

distribution shape.  For all measurement channel combinations, the peaks of the marginal pdfs 597 

(joint and LUT-specific) are biased away from the true solution of reff = 10 m, nor are they 598 

centered on the maximum a posteriori values of effective radius in the 2-D joint posterior pdf just 599 

identified for the ice phase (reff = 7 m for MODIS-SW or reff = 5 m for VIIRS-SW and PACE). 600 



21 

This is a consequence of the integration over  (Equation 10d) for the LUT-specific marginal 601 

pdfs and over  and phase for the joint marginal pdf.  602 

603 

604 

Figure 2: The final retrieval results after cumulatively ingesting information from all retrieval wavelengths into the 605 

GENRA algorithm for a “true” cloud type of   =10, reff = 10 m, and phase = liquid. The left-hand column 606 

corresponds to results specific to “MODIS-SW” cloud retrieval channels, the middle column to “VIIRS-SW” 607 

results, and the right-hand column to “PACE” results (see text).  The top row is the 2-D joint posterior pdf (a, d, and 608 

g) showing contributions from ice thermodynamic phase (pink contours) and liquid thermodynamic phase (blue609 

contours).  The middle and lowest rows are the marginal pdfs for optical thickness (b, e, and h) and effective radius610 

(c, f, and i), respectively, where the joint marginal pdf (black) has contributions from liquid (green) and ice (pink)611 

thermodynamic phase. Vertical dashed lines on marginal pdf plots denote “truth” values.612 

Figure 3 also shows the impacts of retrieval channel number and location on the 613 

probability of retrieving the correct thermodynamic phase but for a “true” cloud type of  =10, 614 

reff = 12 m, and phase = ice. The 2-D posterior joint pdfs that correspond to the final retrieval 615 

with all wavelengths of simulated cloud reflectance measurements are shown in Figure 3 (top 616 

row).  The 2-D joint posterior pdfs are not Gaussian-distributed and provide evidence of 617 

overlapping contributions to the joint posterior pdf from both ice and liquid water phase. The 618 

percentage to which the total probability of the ice phase solution space contributes to the total 619 

probability of the joint phase solution space quantifies the percent probability of an ice phase 620 
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628 

629 

630 

631 

632 

633 

634 

retrieval.  The percent probability of correct phase discrimination for this example is 65% for 

MODIS-SW, 68% for VIIRS-SW, and 82% for PACE. As for the liquid cloud case, the 

maximum a posteriori estimates for the ice cloud phase are centered on the “truth” for MODIS-

SW, VIIRS-SW, and PACE channel combinations, which indicates a non-biased (i.e. accurate) 

retrieval solution for the given simulated measurement conditions. Inaccurately identifying cloud 

phase, however, would result in very different retrieved properties for different channel 

combinations: an optically thicker liquid cloud of larger droplet size for MODIS-SW (τ =16, reff 

= 16 µm), an optically thicker liquid cloud of smaller droplet size for VIIRS-SW (τ =14, reff = 8 

µm), and an optically thicker cloud of the same particle size for PACE (τ =16, reff = 12 µm).  

The middle and bottom rows of Figure 3 show the marginal pdfs in optical thickness and 

droplet effective radius, respectively, for the varying channel combinations.  In all cases, the 

contribution to the joint marginal pdfs are dominated by the ice phase, which is represented in 

the percent probabilities of ice phase discrimination that exceed 50% as discussed in the 

preceding paragraph.  The contributions from the liquid phase solution space broaden the joint 

marginal distribution in optical thickness to larger optical thickness values for all channel 635 
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combinations.  For droplet effective radius, the contributions from the liquid phase solution 636 

space change the peak and breadth of the joint marginal distribution. 637 

638 

639 

Figure 3: As in Figure 2, but for a “true” cloud type of of   =10, reff = 12 m, and phase = ice. 640 

5.2 The Probability of Thermodynamic Phase Discrimination for MODIS, VIIRS, and 641 

PACE Over a Broad Range in Cloud Optical Thickness and Droplet Effective Radius  642 

In this section, we extend the results from Section 5.1 and Figures 2 and 3 using the same 643 

experimental setup (i.e. surface conditions, atmospheric state, and solar and sensor geometries) 644 

to a broad range of cloud optical thickness values (0.05 to 160) and droplet effective radius (5 645 

m to 30 m) values, which notionally encompasses the full shared parameter space where 646 

reflectance values are equally plausible from liquid or ice cloud thermodynamic phase. Figure 4 647 

shows the wavelength-dependent contributions to the cumulative probability of phase retrieval 648 

after ingesting information from the PACE measurement channel set into the GENRA algorithm 649 

for a thin ( = 10) ice cloud with reff  = 12 m. Note, if the experiment was repeated for the same 650 

 and reff  value, but for a liquid water cloud, the probability of correctly discriminating liquid 651 

phase would not be a symmetrically reversed value. This is because the likelihood function 652 

(Equation 8a) is distributed around a measurement value that represents a choice of parameters in 653 
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654 

655 

656 

657 

658 

the liquid or ice cloud phase and encompasses a range of possible cloud parameters where the 

relative magnitude of each respective “solution” enveloped within the likelihood function is 

directly proportional to the degree of overlap between the measurement pdf and the model pdf 

solutions. Since clouds scatter and absorb radiation differently for liquid and ice phases, the 

measurement pdf, and therefore the likelihood function, for liquid or ice phase will encompass a 

somewhat different subset of possible model solutions.  659 

660 

Figure 4: Cumulative probability for correctly discriminating ice cloud phase after ingesting information from the 661 

“PACE” channel set combination into the GENRA algorithm for a “true” cloud type of  =10, reff = 12 m, and 662 

phase = ice. Results at final measurement channel correspond to the percent probability of ice phase retrieval 663 

reported in Figure 3g. 664 

The extension of similar analysis to that shown in Figure 4 to a broad cloud parameter 665 

space and for the final phase probability solution at the longest wavelength ingested into the 666 

GENRA algorithm are shown in Figures 5 and 6. Figure 5 is a contour plot of the total 667 

probability of the “correct” liquid phase solution respective to the total probability of the joint 668 
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liquid and ice phase solution space.  Figure 6 depicts identical results for the cases where the 669 

“correct” solution is the ice phase. 670 

671 

Figure 5: Contour plot of the percent probability of correctly retrieving liquid water cloud phase from the joint 672 

space spanned by ice and liquid phase solutions when the “true” cloud phase is liquid. Values around 50% 673 

indicate an ambiguous phase retrieval (see text).  The subplots are specific to specific measurement channel 674 

combinations: (a) MODIS-SW, (b) VIIRS-SW, and (c) PACE. 675 

676 

677 

Figure 6: As in Figure 5, but for the ice thermodynamic phase. In c), the black point ‘P’ represents the (, reff) 678 

pair discussed in Figure 4.    679 

The results in Figures 5 and 6 show the PACE channel combination provides 680 

significantly improved thermodynamic phase discrimination than either the MODIS-SW or 681 
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VIIRS-SW channel combinations, in particular for τ > 10 and/or larger reff. The VIIRS-SW 

channel combination provides minor improvements for thermodynamic phase discrimination 

relative to MODIS-SW at liquid cloud τ values of approximately 10, ice cloud τ values of 

approximately 4, and reff values of 10 µm or smaller. Correctly retrieving cloud thermodynamic 

phase for optically thin clouds (τ < 10 for liquid and τ < 4 for ice) will remain problematic for 

any of the channel combinations shown.   

Having both channels near 2 µm on the PACE imager provides the additional benefit of 

allowing continuity with the MODIS and VIIRS cloud data records, which use a combination of 

spectral channels including 660 nm, 865 nm, 1200 nm, 1640 nm, and either 2130 nm (from 

MODIS), or 2225 nm (from VIIRS).  Future work will link these phase discrimination results to 

ongoing MODO6 MODIS/VIIRS uncertainty assessments [Platnick et al. 2004, 2017]. 

6 Entropy Relationships in Cloud Optical Properties 

In Section 4 and Figure 1, we described the mathematical relationships between the 

joint, marginal, conditional, and mutual entropy metrics. Here, we graphically illustrate the 

relationships that occur when a measurement provides physical insight into more than one cloud 

optical parameter by using the total, shared, and conditional information content metrics. For 

example, when a particular spectral measurement provides information for both τ and reff  

parameters, we quantify the “shared” information in the measurement by using the mutual 

information content (Section 4.v).  Going one step further, we theoretically explore how we can 

exploit additional information to uniquely constrain one of the parameters (from making an 

assumption about the parameter’s value) and how this will propagate into a net information gain 

for the other parameter; this is called the conditional information content (Section 4.iv). 

6.1 The Shannon, Mutual, and Conditional Information Contents of Cloud Optical 

Properties 

In Figure 7, we show the normalized information content (converted to % from 

normalized values spanning 0-1) for the cloud case τ =10, reff = 10 µm, and phase = liquid 

(discussed in Section 5.1 and Figure 2) as a function of wavelength for the PACE measurement 

channel combination. For this experiment, we have not updated the posterior pdf for each 

subsequent wavelength of measurements introduced into the GENRA algorithm using the prior 

information from the previous wavelength. As a result, the information content results shown in 

Figure 7 represent the information of the joint cloud (τ, reff) parameters for each measurement 

channel alone (i.e. these results do not reproduce the cumulative effect of the spectral 

information). The mutual information (dashed line with black squares), quantifies the 

information “shared” between τ and reff  as measurements as each of the four PACE channels are 

introduced into the GENRA algorithm. For this particular cloud case, each PACE measurement 

channels is shown to provide some information about both τ and reff  to varying degrees.  The 

sum of the marginal Shannon information, identified by the dashed line with black circles, is the 

total of the partial information contributions gained by making a measurement when considering 

τ and reff  independently (Equations 12b-12c).  These partial information contributions need not 

sum to the maximum information provided by a spectral measurement [Rodgers, 1998] when 

that measurement provides information about both τ and reff cloud parameters; the maximum 722 



27 

723 

724 

725 

726 

727 

728 

information, the joint Shannon information (Equation 12a), is identified as the solid black line. 

What we have demonstrated in Figure 7 is that the total information to be gained by making a 

spectral measurement can be broken down into a sum of the total information in τ and reff  that 

the spectral measurement independently provides plus the information in the measurement that 

is shared by τ and reff.  This is illustrated in Figure 7 where the red circles representing the sum 

of the marginal Shannon information content and the mutual information content lie on top of 

the black solid line.  729 

730 

Figure 7: The normalized total (black line), marginal (dashed line with circles), and mutual information content 731 

(dashed line with squares) derived from the entropy relationships in the (, 𝑟𝑒𝑓𝑓) cloud optical parameters after732 

ingesting simulated cloud reflectance at 865 nm, 1640 nm, 2135 nm, and 2225 nm into the GENRA algorithm 733 

(with no update of the prior). The results are specific to the same cloud case described for Figure 2. 734 

In Figure 8, we use the conditional information content to quantify the total information 735 

that can be gained in a parameter (when making a spectral measurement that provides 736 

information on more than one parameter) by incorporating additional information to provide 737 

complete knowledge of the other, correlated, parameter.  The source of this additional 738 

information would depend upon application, for example, in-situ data, another ground, air, or 739 

space platform, or by making an assumption (as was done for this theoretical experiment). The 740 
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results are specific to the same , reff, and phase experimental setup and implementation 741 

described for Figures 2 and 7.  742 

In Figure 8a, we show the normalized Shannon information content in the marginal pdf 743 

(Equation 12b) of optical thickness as a function of PACE spectral channel (solid line with 744 

circles). This is the total information gained by making these spectral measurements when we 745 

consider the measurements provide independent information about  and reff. Theoretically, since 746 

the measurement provides information about both  and reff, we have evaluated the additional 747 

information in  that can be gained when we assume the effective radius value is known to 748 

complete certainty; this is called the conditional information content (dashed line with circles).   749 

At all retrieval wavelengths, the conditional information is always greater than the marginal 750 

Shannon information in optical thickness, which is to be expected because adding information 751 

always reduces uncertainty (i.e. the Shannon information is inversely related to entropy and 752 

decreasing entropy represents decreasing uncertainty as discussed in Section 4).  In addition, and 753 

to be expected, the relative increase in information gained in  by complete knowledge of  reff is 754 

greatest at retrieval wavelengths where the information in a measurement that is shared by  and 755 

reff is the largest (see mutual information; Figure 7). 756 

Figure 8b repeats the analysis discussed in Figure 8a, but for the conditional information 757 

content in reff that can be exploited when the optical thickness value is theoretically known to 758 

complete certainty. Unlike the mutual information content, the conditional information contents 759 

of  and reff are not symmetric.  This simply reflects that a single measurement, while potentially 760 

providing the very real possibility of information about more than one parameter, may not 761 

equally distribute that information between the parameters (i.e. a measurement may provide 762 

more information about  than reff, for example, and therefore, any potential change to the 763 

entropy of one parameter through theoretical knowledge of the other parameter would not be 764 

symmetric).  765 

766 

Figure 8: The normalized Shannon information content and conditional information content of (a) cloud optical 767 

thickness and (b) droplet effective radius for the experimental setup and implementation described for Figures 2 768 

and 7.   769 
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There are additional aspects of the information content relationships shown in Figure 7 

and Figure 8 not yet discussed that manifest directly from the physical principles that govern the 

strong wavelength-dependence of absorption and scattering of shortwave radiation by clouds. As 

discussed in the introduction, absorption of radiation by cloud water droplets or ice particles is 

negligible at visible wavelengths and increases at longer wavelengths (and with larger particle 

size).  The extinction (absorption + scattering) of radiation by cloud droplets depends on the 

particle cross section, and hence particle size. This lends to the inability to completely separate 

cloud optical thickness and effective radius in cloud retrievals. However, at visible wavelengths 

where cloud absorption is very small most, but not all, of the information is in optical thickness 

as shown in Figures 8a.  The greatest information in particle size comes at near-infrared 

wavelengths where the dependency of absorption on particle size is greatest, but cannot be 

completely separated from information in optical thickness (Figures 8b). The mutual 

information and conditional information contents provide the tools to quantify changes in 

dependencies between τ and reff that manifest with changes in spectral channels. For example, 

such dependencies in mutual information at 2135 nm (or 2225 nm), relative to 1640 nm, can be 

seen in Figure 7 and the conditional information in Figure 8. 785 

6.2 Mutual Information as a Visualization Tool for Cloud Parameters 786 

In Section 6.1, we quantified the information given measurements in different channels 787 

that is shared by  and reff and presented formal metrics that quantify this dependency in the 788 

cloud optical properties as a function of wavelength. For many years, the physics behind two-789 

wavelength cloud retrievals has been illustrated by plots similar to Figure 9a, which shows cloud 790 

reflectance (i.e. reflected cloud radiance normalized by downwelling irradiance) at two 791 

wavelengths spanning the very near-infrared through the near-infrared [for example, Nakajima 792 

and King, 1990; Haywood et al., 2004; Platnick et al., 2003].  At visible and very near-infrared 793 

wavelengths, such as 865 nm, the absorption of radiation by water is negligible and the 794 

magnitude of cloud reflectance is dominated by optical thickness as demonstrated by the near-795 

vertical lines of constant optical thickness values in Figure 9a. At near-infrared wavelengths, 796 

such as 2135 nm, the absorption of radiation by water is much stronger and the magnitude of the 797 

absorbed radiation increases with particle size ((i.e. cloud reflectance decreases in the near-798 

infrared with increasing particle size as demonstrated by the near-horizontal lines of constant 799 

effective radius in Figure 9a).  As optical thickness increases, the near-vertical lines of optical 800 

thickness and the near-horizontal lines of effective radius approach orthogonality (i.e. the 801 

different spectral channels provide nearly “independent” information on  and reff).   802 

We have shown (Figures 1 and 7) that the mutual information content is a quantitative 803 

way to measure the degree of independence in parameters for a spectral measurement. In Figure 804 

9b, we show results of an experiment where simulated cloud reflectance at two wavelengths (865 805 

nm and 2135 nm) was sequentially introduced into the GENRA algorithm and the cumulative 806 

information in the retrieval was assessed for a broad range of (, reff) values. The experimental 807 

assumptions, setup, and implementation are kept consistent with those described for Figure 7.  808 

As expected, the mutual information content results mimic the dependencies in  and reff depicted 809 

by the two-wavelength reflectance plot of Figure 9a. The amount of shared information is largest 810 

at small effective radius values (reff < ~ 4 m) for all optical thickness values less than  ~ 50.  At 811 
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small optical thicknesses ( < ~10), a greater dependency with particle size exists for all particle 812 

sizes, but especially for those of 10 m or smaller. 813 

814 
Figure 9: (a) Cloud reflectance look-up table at 865 nm and 2135 nm demonstrates near-vertical lines of constant 815 

optical thickness and near-horizontal lines of constant effective radius. (b) The mutual information in optical 816 

thickness and effective radius from measurements at 865 nm and 2135 nm. 817 

7 Assessing Impacts of Higher Measurement Accuracy on Cloud Optical Properties 818 

Current imagers, such as MODIS and VIIRS, contributing to the global cloud data record 819 

have a radiometric accuracy of around 3% [e.g. Xiong et al., 2014; Xiong et al., 2016].  820 

However, the Reflected Solar (RS) instrument for CLARREO pathfinder that is currently being 821 

developed, will have a radiometric accuracy approximately an order of magnitude better (closer 822 

to 0.3%) [Kopp et al., 2014].  Here, we investigate the impacts of improved measurement 823 

precision on the discrimination of cloud thermodynamic phase and the retrieval of cloud optical 824 

properties.  For this experiment, our “true” cloud type is  =10, reff = 12 m, and phase = ice. The 825 

model uncertainty is assumed to be 2%, measurement uncertainty is 0.3%, and we assume a 826 

black surface.   827 

Figure 10 shows the 2-D posterior joint pdfs that correspond to the final retrieval after all 828 

PACE channel combinations (865 nm, 1640 nm, 2130 nm, and 2225 nm) are introduced into the 829 

GENRA algorithm and their cumulative impact evaluated (i.e. for this experiment, we have 830 

updated the posterior pdf for each subsequent wavelength of measurements using the prior 831 

information from the previous wavelength). The obvious impacts of improved measurement 832 

accuracy can be seen by comparing Figure 10 with Figure 3g (upper right plot). For this cloud 833 

type (, reff, phase) and observational conditions, the percent probability of retrieving the correct 834 

(i.e. ice) phase is 100%; there is no overlapping contribution to the joint posterior pdf from the 835 

solution space identified as coming from the liquid water phase. The maximum a posteriori 836 

estimate of the 2-D joint posterior pdf is centered on the “true” (, reff) values.  In addition, 837 

because the distribution in (, reff) space is more Gaussian, the maximum a posteriori estimates of 838 
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optical thickness and effective radius derived from the marginal pdf distributions are also 839 

centered on the “true” values (not shown).  840 

841 

Figure 10: The 2-D joint posterior pdf for  =10, reff = 12 m, and phase = ice assuming measurement 842 

uncertainty of 0.3% and the “PACE” measurement channels (Table 1). The impacts of increased radiometric 843 

accuracy can be seen by comparing this result with the result shown in Figure 3g. 844 

The reduced dependencies between optical thickness and effective radius in this 845 

experiment, reflected by the Gaussian nature of the 2-D joint posterior pdf, are also represented 846 

in the relationships in the joint, marginal, and mutual entropy metrics presented in Figure 11. In 847 

Figure 11, we demonstrate that the sum of the Shannon information content in the marginal pdfs 848 

of optical thickness and effective radius approaches the Shannon information content value of 849 
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the joint (, reff) 2-D pdf only when the mutual information between the parameters approaches 0 850 

(at 1640 nm, for example). 851 

852 

Figure 11: The normalized total (black line), marginal (dashed line with circles), and mutual information content 853 

(dashed line with squares) derived from the entropy relationships in the (, 𝒓𝒆𝒇𝒇) cloud optical parameters after 854 

ingesting simulated cloud reflectance at 865 nm, 1640 nm, 2135 nm, and 2225 nm into the GENRA algorithm (prior 855 

is updated). 856 

Finally, we revisit the experiment shown in Figure 9b, and repeat the simulations using a 857 

measurement uncertainty of 0.3%. The results are shown in Figure 12 and demonstrate that the 858 

dependency between optical thickness and effective radius is almost completely limited to 859 

optical thickness values less than  ~ 10.  A practical interpretation suggests that improvements 860 

in instrument radiometric accuracy will lead to improvements in the retrieval of cloud properties 861 

over parameter ranges for which passive shortwave images have already demonstrated retrieval 862 

“skill”.  New retrieval approaches, such as spectral slopes and additional retrieval wavelengths 863 

[McBride et al., 2011; LeBlanc et al., 2015], the combination of observations from passive 864 

sensors [Sourdeval et al., 2015], or the combination of observations from lidar and passive 865 

remote sensing methods [Lebsock and Su, 2014] will also be needed to make further 866 

improvements for (, reff) pairs that are challenging for passive sensors (for example, optically 867 

thin clouds).  In addition, it would be premature to assume that only these 4 retrieval 868 

wavelengths, at a higher measurement accuracy, would suffice to discriminate cloud phase or 869 
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retrieve cloud properties to high precision for global conditions (for example, clouds over bright 870 

snow/ice surfaces) when restricting the parameter space to  > 10 . 871 

872 

Figure 12: As in Figure 9b, but for measurement uncertainty equal to 0.3%. 873 

8 Summary and Future Work 874 

In this work, we have quantified the probability of cloud thermodynamic phase 875 

discrimination using shortwave channels alone from the MODIS, VIIRS, and future PACE 876 

imagers.  The results show that the use of dual channels near 2 m improves phase 877 

discrimination for regions of the cloud property parameter space where standard retrieval 878 

methods currently provide usable information (i.e. for moderate cloud optical thickness and 879 

larger particle sizes).  In addition to quantifying the increase of information by adding retrieval 880 

channels, the GENRA toolkit has utility for comparing channel sets for differing retrievals and 881 

for selecting channels during mission development. 882 

While our analysis was performed for simplified assumptions of measurement 883 

uncertainty (3%; wavelength-independent) and model uncertainty (2%; wavelength-independent) 884 

and for a dark, spectrally neutral surface, we believe these results have utility in establishing a 885 

baseline and for simple cloud scenes over ocean surfaces. As part of ongoing work we are 886 

repeating the analysis approach discussed here, but for differing land surface types (i.e. snow/ice, 887 

vegetation) based on spectral measurements of spectral surface albedo from the MODIS 888 

instrument (e.g. Moody et al. [2007]) and from select Solar Spectral Flux Radiometer [Pilewksie 889 

et al., 2003]  measurements (summarized in Coddington et al. [2013]) because the reflected 890 

radiation from clouds is also influenced by the surface and atmosphere below the cloud, 891 

particularly for thin clouds [e.g., Platnick et al., 2001].   892 

Earth’s changing climate has profound implications for society [NASA, 2014 Strategic 893 

Plan]. The successfulness of society in adapting to and mitigating the impacts of climate change, 894 
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including understanding and predicting the role of clouds in a changing climate, requires timely 895 

and accurate information. In Sections 6 and 7 we applied new (to cloud retrieval studies) and 896 

existing information content metrics to define the information inherent in a spectral 897 

measurement, all with the common goal of quantifying the uncertainties in retrieved cloud 898 

properties and to improve our ability to effectively and efficiently utilize the information in 899 

current and future cloud observations.   900 

For example, we give examples where the physical models of cloud reflectance show that 901 

a single spectral measurement gives information about both cloud optical thickness and droplet 902 

effective radius. The conditional information content could be used to quantify the theoretical 903 

impact of how additional information about one of these parameters, possibly from a 904 

measurement or a retrieval from a different platform, may improve our knowledge of the other 905 

cloud parameter.  In addition, we have shown the utility of the mutual information content in 906 

reflecting the dependencies between cloud optical thickness and droplet effective radius given 907 

spectral measurements.  Historically, these dependencies have been illustrated using plots of 908 

cloud reflectance (or albedo) at two cloud retrieval wavelengths.  However, illustrating these 909 

dependencies with cloud reflectance plots for anything more than 2 retrieval wavelengths 910 

becomes impossible to interpret with any useful physical meaning, leaving the mutual 911 

information content as a rigorous approach to reflect these dependencies in multi-spectral cloud 912 

retrievals.  913 
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